Fluid Retrofit for Existing Vapor Compression Refrigeration Systems and Heat Pumps

Evaluation of Different Models

Dateibereich 47971

663,6 KB in einer Datei, zuletzt geändert am 14.08.2019

Dateiliste / Details

DateiDateien geändert amGröße
Roskosch_et_al_Fluid_Retrofit.pdf14.08.2019 12:37:31663,6 KB
The global warming potential of many working fluids used nowadays for vapor compression refrigeration systems and heat pumps is very high. Many of such fluids, which are used in currently operating refrigerators and heat pumps, will have to be replaced. In order to avoid a redesign of the system, it would be very helpful if efficient and ecological alternative working fluids for a given plant could be found. With modern process simulation tools such a selection procedure seems possible. However, it remains unclear how detailed such a model of a concrete plant design has to be to obtain a reliable working fluid ranking. A vapor compression heat pump test-rig is used as an example and simulated by thermodynamic models with different levels of complexity to investigate this question. Experimental results for numerous working fluids are compared with models of different complexity. Simple cycle calculations, as often used in the literature, lead to incorrect results regarding the efficiency and are not recommended to find replacement fluids for existing plants. Adding a compressor model improves the simulations significantly and leads to reliable fluid rankings but this is not sufficient to judge the adequacy of the heat exchanger sizes and whether a given cooling or heating task can be fulfilled with a certain fluid. With a model of highest complexity, including an extensive model for the heat exchangers, this question can also be answered.
Wissenschaftliche Texte » Artikel, Aufsatz
Fakultät / Institut:
Fakultät für Ingenieurwissenschaften » Maschinenbau und Verfahrenstechnik » Institut für Verbrennung und Gasdynamik
Dewey Dezimal-Klassifikation:
600 Technik, Medizin, angewandte Wissenschaften » 620 Ingenieurwissenschaften
refrigerants, retrofit, process simulation, replacement fluids, experiments
Kollektion / Status:
E-Publikationen / Dokument veröffentlicht
Dateien geändert am:
Creative Commons Namensnennung 4.0 InternationalDieses Werk kann unter einer Creative Commons Namensnennung 4.0 International Lizenz genutzt werden.
Energies 2019, 12, 2417; Published: 24 June 2019